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NEW METHOD IN THE THEORY OF LIGHT SCATTERING %/355
V.V.S0bolev

A tentative method for simplifying the theory of light scat-
tering, based on the probability of light quantum yield from
a given site of the medium in a given direction, is developed.
The formula is applicable for calculating the energy scattered
by the medium in different directions, for any position of the
light source. Application examples for the formula include
determination of the brightness distribution over a stellar
disk, emission intensity of a stellar atmosphere, intensity
distribution within a spectral line, and luminosity of a body
of arbitrary shape. Generalization to a layer of finite optical
thickness and arbitrary scattering indicatrix is given.

The theory of light scattering in stellar and planetary atmospheres has
made great progress in recent years. The scope of the problems under question
has greatly expanded, and a number of effective solution methods have been
worked out. However, many important problems still remain to be solved. Of the
existing methods of solution some are extremely awkward, others are insufficient-
ly accurate, and still others have a limited area of application. Therefore, a
search for new methods in the theory of light scattering is quite desirable.

The present article points out the advisability of introducing a new con-
cept into the theory of light scattering, namely, the probability of light
quantum yield from a given site of the medium in a determined direction. The
introduction of this concept greatly simplifies the solution of various problems
of light scattering, and the physical meaning of the solution itself becomes
more intelligible.

I.

Iet us first examine the problem of the diffuse reflection of light from
a plane layer of infinitely large optical thickness. We will assume that, in
the elementary act of scattering, the probability of "survival" of the quantum
is equal to A (i.e., the ratio of the scattering coefficient to the true absorp-

tion coefficient is equal to ———&—X—), and the probability of scattering to dif-

1

ferent sides is identical (i.e., the scattering indicatrix is spherical). lLet
the layer be illuminated by parallel rays of an intensity equal to Ip and let
the angle of incidence be §o. Wanted is the intensity of radiation diffusely
reflected from the layer in different directions.

% Numbers given in the margin indicate pagination in the original foreign text.
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Usually, the above problem reduces to the simultaneous solution of the
radiative transport equation

cos B dar (r:i:, %) _ I (t,&, 3,) — B(z,\ﬂo) (1)

and radiation balance equation

B(' 00) =—%"S1(‘t ¥, ﬁo)s"ﬁ)d{) + 1 e—T e By (2)
0

In these equations, I(T, 9, 9o) is the intensity of radiation at an optical
depth T at an angle $ to the external normal and B(T, 8o) is the ratio of the
radiation coefficient to the absorption coefficient at an optical depth T.

From egs.(1l) and (2) we easily derive one integral equation determining /356
the quantity B(T, 90):

o
\
Bz, 0g) =5 S Eijix—{B({,8) d< + % Top-vsecd, (3)
0
where Ejx = f ~* Tx . If the quantity B(T, 8o) is known, then the intensity

x .
of radiation emerging from the layer of interest here is found by the formula

1(0,9,9) = { B, 0g) ¢ 7500 go0 0 g, (4)
[1] S

Let us now solve the same problem by a different method. We will designate
in terms of p(T, 9 )dw the probability that the light quantum absorbed at optical
depths T emerges from the medium at an angle ¢ to the normal within the solid
angle dw. It is easy to set up the integral equation for determining the

quantity p(T, 8).

The quantity p(T, 8) is made up of two parts: the probability of quantum
yield from the medium without scattering along the paths and the probability of
quantum yield from the medium after multiple scattering. It is obvious that the

A -Tsec d
I
multiply the probablhty that the quantum absorbed at a depth T will then be ab-
sorbed at a depth ' by the probability of quantum yleld from the medium from a
depth 7' and integrate this product with respect to 7' from O to . In other
words, the second part will be equal to

first part will be equal to . To find the second part we must

g~ T isecd gec ¢ sinvdi’.

CIe YO

w D
Sp(t',ﬁ)d‘»]‘;;‘ 2%
0

However, the inner integral in this expression is equal to E; ‘T - ‘. There~
fore, the quantity p(T, §) will be determined by the following integral
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equation:

p(‘:,&)==%e—““c”-}-%glz’i{:-—fjp(t',i))d-.'. (5)
0

If the probability of quantum yield from the medium from a given depth is
known and if we also know the quantity of energy arriving from the light source
and being absorbed at this depth, then by multiplying these quantities we will
obviously obtain the quantity of energy emerging from the medium from the depth
in question. Integration of this product with respect to all depths will give
the total energy issuing from the medium (in a determined direction). In the
examined case %g.e., when a plane layer is illuminated by parallel rays of in-
tensity Io at an angle of incidence of 8,) a quantity of energy equal to

Toe ™ °°%dr is absorbed at the optical depth T in an elementary volume with a

cross section of 1 ex® and an optical thickness of dT. Multiplying this quanti-
ty by p(T, 8) and integrating with respect to T from O to o, we find the energy
escaping from the medium through 1 en® of the surface at an angle 8 to the
normal within unit solid angle. The unknown intensity of radiation emerging /357
from the medium will be equal to

1(0,8,8,) = § p(s, 0) Ie- 500500 p e, (6)

Let us compare the results obtained by the two methods. Equations (3)
and (5) indicate that

plvt) = 2CY, (7)

i.e., the probability of quantum yield from the medium p(T, 8) is equal to the
function B(7, 9) already known in the theory of scattering when Io = 1. Com~
paring egs.(L4) and (6) and using in this case the relations (7), we also find

10,8, 8,)cosd=1(0, by, 8)cos D, (8)

The so—c§lled "principle of reversibility" for optical phenomena is expressed
by eq.(6).

Equations (7) and (8) derived above are, of course, interesting. However,
they do not represent the essence of the matter. What is important is that, in
introducing into the examination the probability of quantum yield from the
medium p(T, 9) and in setting up eq.(5) which determines the quantity p(T, $),
we made no assumptions as to the mode of appearance of the light quanta in the
medium. However, once we have defined the cquantity p(T, 8), there will be no
difficulty in calculating the energy scattered by the medium in different direc-
tions, for any position of the light sources.

Let us assume at first that the illumination produced by the light sources
is identical for all sites located at one and the same depth. Let £(T)dT be
the quantity of energy absorbed within 1 sec by an elementary volume with a
cross section of 1 em” and an optical thickness dT, at an optical depth 7. It
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is obvious that by using the quantity p{T, 9) we can write the following expres-
sion for the intensity of radiation emerging from the medium at an angle 9 to
the normal:

1®)= {70 p(x 9)sec daz. (9)

If the medium is illuminated by parallel rays of intensity I, and at an
angle of incidence of 85, then

1 (%) = I ,e—rme0, (10)
and in this case we replace eq.(9) by the previously presented eq.(6).

Iet us give other examples of using eq.(9). ILet the light sources be
located uniformly at an optical depth T in a thin layer having a thickness AT
and let them emit an identical quantity of energy in different directions. We
will designate the quantity of energy emitted in 1 sec by an elementary volume
of the layer with a cross section of 1 cn® in terms of LmBoAT. In this case,

A

for the function £(T) we should obviously take the quantity —

Bo. Therefore,
by means of eq.(9) we find

I1(8)= 4T"B.,r.\tp (v, B) sec . (1)

If the luminous layer is located at very great optical depths, then mainly
diffuse radiation of the medium will reach the observer. Here the relative /358
distribution of the radiation intensity by angles will obviously be independent
of the depth of the luminous layer. In other words, the indicated distribution
can then be expressed by the formula

I(8)~p(x,)secd for T—>o00. (12)

When A = 1, i.e., in the case of pure scattering, the model of a medium with
energy sources at an infinitely great depth corresponds particularly to a
stellar photosphere. Therefore, eq.(12), at A = 1, yields specifically the
brightness distribution over the stellar disk.

If the light sources are distributed uniformly throughout the entire
medium, then in place of eq.(11l) we have:

(-]

1(8) = "T"B.,Sp(z, 9) sec 9 dx. (13)

0

It is easy to see that the intensity of the radiation escaping from the atmos-
phere of a star within the spectral line can be expressed by eq.(13). In this
case, the quantity p(T, 8) will depend upon the frequency v, making use of the
quantities A and T:

ov - \
)\ﬂ-;v—;;, d~—_(o,,+:z)dz, (1[4')



where oy is the coefficient of scattering in the spectral line, o is the ab-
sorption coefficient in a continuous spectrum, dz is an element of depth in the
atmosphere. As regards the radiation sources, it is known that the energy
emitted in a line comes from the energy of the continuous spectrum. We will

use 4B adz for denoting the quantity of energy emltted in a continuous spectrum
by an elementary volume with a cross section of 1 cnf and thickness dz, in

1l sec. This expression can also be presented in the form of 4m(1l - A)B*dT by
means of egs.(14). It is obvious that, in eq.(13), we can now substitute the
quantity (1 - A)B* for the quantlty Bo. Furthermore, we will assume that in the
case in question the quantity B® is the intensity of radiation escaping from the

stellar atmosphere in a continuous spectrum. Therefore, the ratio —Eé%l- will
determine the contour of the spectral line. Denoting this ratio by ry(9), we
obtain

ry($) = 4= 1%5 S Pz, ¥)sec d dx. (15)
S

This indicates that quantities such as the brightness distribution over the
stellar disk and the intensity distribution within the spectral line, which are
of importance for astrophysics, are quite simply expressed in terms of the
quantity p(T, 9 ) introduced above.

Let us now assume that the stipulation relative to the location of the
light sources, made in deriving eq.(9), is not satisfied, meaning that the
illumination is not identical at various sites at the same depth. Under such
conditions, the intensity of radiation emerging from the medium will depend not
only on the direction but also on the locus of escape. Therefore, for its de-
termination we must introduce the probability of quantum yield from the medium,
which accordingly generalizes the quantity p(T, 8) introduced above. However,
it 1s obvious that the total energy scattered by the medium in a certain direc~
tion can be found in the general case by means of the quantity p(T7, ). If we
denote by F(T)dT the quantity of energy arriving from the light sources and /359
being absorbed between the optical thicknesses T and T + dT, then the quantity
of energy escaping from the medium at an angle § to the normal in unit solid
angle will be equal to

[ ; 16
E®={F@pe, 0. (16)
Jre

Equation (16) can be applied primarily to a medium illuminated by a point
source of light. Let the point source emit in different directions the same
quantity of energy and let its luminance be equal to L. If the point source is
located above the medium, then it is easy to obtain

F (v) = {: Eg. (17)

Substituting this expression for F(T) into eq.(16) and taking into consideration
eq.(5) determining p(7, $), we then find
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E(ﬂ)=§{_p(o, H—2]- (18)

It should be stated that the quantity E(8) does not depend on the height of the
light source above the medium.

If the point source of light is within the medium at an optical depth T,
then

F(&)= £ E|v—=|, (19)

and eq.(16) over eq.(5) will yield
E(&):%[p(e,o)— ,‘ine—mcﬂ]. (20)

Of course, €q.(20) determines only the energy escaping from the medium after
scattering (but not directly from the light sourceg. Taking into account the
physical meaning of the quantity p(T, $), we could write this formula immediate-
ly.

Equations (19) and (20) may be useful for determining the energy scattered
by a ?ebula in different directions upon its illumination by a star (or several
stars).

Thus, the various problems of the theory of light scattering (which differ
from one another by the location of the light sources) are quite simply solved
by means of the function p(T, 8). This function itself, which represents the
probability of quantum yield from a given depth in a given direction, simultane~
ously represents, as indicated above, the ratio of the radiation coefficient to
the absorption coefficient [i.e., the function B(T, 8)] in the problem on diffuse
reflection of light by a plane layer when the layer is illuminated by parallel
rays. This fact must be considered of prime significance since all results ob-
tained in previous works for determining the function B(T, 8) can now be used
also for determining the function p(T, 8). In particular, for the function
p(T, 8) we can take the approximate expression for the function B(T, 8) derived
from the system of equations (1) and (2) in solving them by methods conventional
in astrophysics (averaging the radiation intensity by angles). If this expres-
sion for p(T, 8) is substituted into egs.(12) and (15), we will arrive at the
formulas known in astrophysics and giving the energy distribution over the
stellar disk and the contour of the spectral line. On substituting the indi- /360
cated expression for p(T, 9) into egs.(9) and (10) we can obtain, at proper
selection of the functions f(T) and F(7), an approximate solution for any other
problem concerning the luminosity of a plane layer.

II.

As an example of employing the above formulas, we will reproduce certain
results obtained earlier by V.A.Ambartsumyan in his well-known work on the
theory of light scattering.
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First, let us derive a new equation for determining the function p(T, 8).
Wanted is the probability of quantum yield from an optical depth T + AT, i.e.,
p(T + AT, 8). For this, let us imagine that the quantum emerges from an optical
depth T and then passes through an additional layer of thickness AT. Then, for
p(T + AT, 8) we derive the following expression:

Pt + A7, 8) = p (wd¥(1 — Arsec §) +

5 | | (21)
+ 2= S P (= %) sin 'dd’ Az sec §p (0, V).
) oot

The first term on the right-hand side of this relation takes into account the
fact that the quantum may escape from a depth T at an angle 8 to the normal and
pass through an additional layer without absorption, while the second term takes
into account the fact that the quantum may emerge from a depth T in any direc-
tion, may then be absorbed in the additional layer, and scattered by it in a
given direction. From eq.(21) we obtain

3

ip (=, & . W . .

P—f;r) = — p(z M)secth -+ 2xp (0, H) Sp(t, 9') sec #' sin H'd9'. (22)
0

For further convenience we will denote cos 9 by T and p(T, 8 ) by p(T, N). Then
the equation determining p(T, M) can be written in the form

. A ’
f_/P_g:. ) = - .:')_p (1’ 7‘) + 2“1) (Or ‘f‘) S P (11 ."') !,T,_ ° (23)

0

An analogous equation was previously derived by Ve.A.Ambartsumyan for deter-
mining the function B(T, T) directly from the integral equation ?gg and used by
him for solving the problem of diffuse reflection of light by a plane layer
[eq.(1)]. Then, using eq.(23) other problems concerning the luminosity of the
layer can be solved.

We will first present the solution of the problem of diffuse reflection of
light from the layer. Let us denote cos 8o by & and, in place of the intensity

of the diffusely reflected light I(0, M, €), let us introduce the brightness
coefficient p(N, €) by means of the relation

10,79 ="2s(ny& (24)

Taking into consideration that the quantity I(0, M, §) is determined by eq.(3),

_ T
we then multiply both sides of eq.(23) by e 5 %r and integrate from O to «,
As a result we find
1
p (0, %) (0 %) = mp(0,7) [1 +2:Yp(4.8) dv.'] : (25)
U



However, it is obvious that /361
1

p0,7) = f,; [1 + ZnOSp(n, ) dn’] . (26)

This follows both from the physical meaning of the quantities p(0, M) and
p(M, M") and from eq.(2) at T = O. Therefore, designating

L
v(n)=1+2n§p(nm’)dn'. (27)

we derive the following expression for the brightness coefficient:

_rome(E) :
P("'E)"TT{&;_' (28)

where the function ¢(7) is determined from the equation

1

9(n)=1+%w(n)g;‘:f)5 dt. (29)
(1]

Equation (29) is readily solved numerically. Its solution was obtained in
final form by the author (Ref.5).

Let us now find the brightness distribution over the stellar disk. For
this, using eq.(12) we must obtain the expression for p(T, M) in infinitely deep
layers of the medium. Assuming that, in these layers,

Pz ) =C(y)e*, (30)

and substituting this expression for p(T, M) into eq.(23), we find

Cln)= 4221, (31)

where A is an arbitrary constant and k is determined from the equation
A ¢ ()
7\ e dn=1. (32)
4]
Since we are interested in the case of pure scattering (A = 1), and since here

k = 0, the brightness distribution over the stellar disk will be obtained from

I(n)~e(x): (33)

Finally, let us determine the contour of the spectral line. According to
eq.(15), we must then integrate the function p(T, ﬁg with respect to T from O
to ®». From eq.(23) we readily obtain

8



d )
VP S=g—20 (31)
A \
0 1"“2‘S9(n) dn
¢
However, it follows from eg.(29) that /362
, ]
—-[j‘?("l)dn=1-—]/1——).. (35)
0 .
Therefore, substituting eq.(3L) inte eq.(15) and taking intc account eq.(35),
we find
() =9eH)V1T—k (36)

As already mentioned above, the results expressed by egs.(28), (33), and
(36) were obtained for the first time by V.A.Ambartsumyan in a number of papers
(Ref.2, 3, L). For this, his very elegant method involving a study of processes
occurring only in the surface layer was used. Obtaimment of the same results
by the function p(T, TM) seems also of some interest.

ITT.

It was shown above that the introduction into the light scattering theory
of a new quantity - the probability of the yield of a light quantum from a given
site of a medium in a given direction - greatly facilitates the solution of
various problems of the theory of light scattering. For simplicity, we con-
sidered that the medium is a plane layer of infinitely large optical thickness
with a spherical indicatrix of scattering. It is easy, however, to give a
generalization of the results obtained above for a layer of finite optical
thickness and arbitrary scattering indicatrix. It is especially important that
in the general case the probability of quantum yield from a layer will be equal
to the ratio of the radiation coefficient to the absorption coefficient in the
problem of the luminosity of a layer illuminated by parallel rays, i.e., the
function already known in the theory of light scattering.

Problems of the luminosity of a body of arbitrary shape can also be solved
by the method presented above. For this, it is necessary to determine first the
probability of quantum yield from a given site of the body in a prescribed di-
rection. Then, the quantity of energy scattered by the body in a given direc-
tion at any position of the light sources is found by integration. The problem
of the luminosity of a sphere will be the next in complexity after the problem
of the luminosity of a plane layer. This might be useful in determinations of
the luminosity of stars and nebulae of spherical shape.

Finally, nonstationary problems of the theory of light scattering, i.e.,
problems of the luminosity of a body in the absence of a radiation balance, can
also be solved by the proposed method. To this end, it is necessary to introduce

Q
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the probability of quantum yield from a given site of the body in a prescribed
direction over a certain time interval.

The author proposes to take up all problems touched upon here at a later
date.
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